Law of large numbers for the sequence of uncorrelated fuzzy random variables

نویسندگان

چکیده

We shall prove a weak law of large numbers for the uncorrelated (see Definition 3.1) fuzzy random variable sequence with respect to uniform Hausdorff metric $d_H^{\infty}$, which is an extension independent variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

Weak law of large numbers for i.i.d. fuzzy random variables

In this paper, weak laws of large numbers for sum of independent and identically distributed fuzzy random variables are obtained.

متن کامل

on the convergence rate of the law of large numbers for sums of dependent random variables

in this paper, we generalize some results of chandra and goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). furthermore, we give baum and katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Intelligent and Fuzzy Systems

سال: 2021

ISSN: ['1875-8967', '1064-1246']

DOI: https://doi.org/10.3233/jifs-210099